Abstract

This research examined the production of a V2O5-g-C3N4 nanocomposite to remove organic dyes from wastewater. To generate the V2O5-g-C3N4 nanocomposite, the sonication method was applied. The testing of V2O5-g-C3N4 with various dyes (basic fuchsin (BF), malachite green (MG), crystal violet (CV), Congo red (CR), and methyl orange (MO)) revealed that the nanocomposite has a high adsorption ability towards BF, MG, CV, and CR dyes in comparison with MO dye. It was established that the modification of pH influenced the removal of CV by the V2O5-g-C3N4 nanocomposite and that under optimal operating conditions, efficiency of 664.65 mg g−1 could be attained. The best models for CV adsorption onto the V2O5-g-C3N4 nanocomposite were found to be those based on pseudo-second-order adsorption kinetics and the Langmuir isotherm. According to the FTIR analysis results, the CV adsorption mechanism was connected to π–π interactions and the hydrogen bond.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call