Abstract

The culture levels of glucose and CO(2) have been reported to independently have important influences on mammalian cell processes. In this work the combined effects of glucose limitation and CO(2) partial pressure (pCO(2)) on monoclonal antibody (IgG) producing Chinese Hamster Ovary cells were investigated in a perfusion reactor operated with controlled cell specific medium feed rate, pH and osmolality. Under high glucose conditions (14.3 +/- 0.8 mM), the apparent growth rate decreased (from 0.021 to 0.009 h(-1)) as the pCO(2) increased to approximately 220 mmHg, while the cell specific IgG productivity was almost unchanged. The lactate yield from glucose was not affected by pCO(2) up to approximately 220 mmHg and glucose was mainly converted to lactate. A feed medium modification from high (33 mM) to low (6 mM) glucose resulted in <0.1 mM glucose in the culture. As a result of apparently shifting metabolism towards the conversion of pyruvate to CO(2), both the ratio of lactate to glucose and the alanine production rate were lowered (1.51-1.14 and 17.7-0.56 nmol/10(6) cells h, respectively). Interestingly, when the pCO(2) was increased to approximately 140 mmHg, limiting glucose resulted in 1.7-fold higher growth rates, compared to high glucose conditions. However, at approximately 220 mmHg pCO(2) this beneficial effect of glucose limitation on these CHO cells was lost as the growth rate dropped dramatically to 0.008 h(-1) and the IgG productivity was lowered by 15% (P < 0.01) relative to the high glucose condition. The IgG galactosylation increased under glucose- limited compared to high-glucose conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.