Abstract

Ultrathin (10–30 Å) SiO2 layers with large interface-state densities were used as the dielectric between aluminum and degenerate silicon. The presence of interface states resulted in current-vs-voltage curves characteristic of metal-insulator-metal (MIM) tunnel structures. MIM tunneling theory was used to estimate the Si-SiO2 (φSi-SiO2) and the Al-SiO2 (φAl-SiO2) barrier heights. We found that the Si-SiO2 barrier height increased from 0.42 eV at 10 Å to 0.65 eV for 25.5 Å of SiO2 on degenerate p-type Si, and from 0.64 eV at 14 Å to 1.27 eV for 29.3 Å of SiO2 on degenerate n-type Si. The Al-SiO2 barrier height could not be consistently determined but was about 0.61±0.16 eV. A smooth transition from Schottky barrier to MOS tunnel structure was observed. The thickness dependence of φSi-SiO2 is most likely due to the recently observed 15–20-Å nonstoichiometric SiO transition region at the Si-SiO2 interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.