Abstract

It is now well accepted that the impulse response time of the magnetosphere to sudden changes in the interplanetary medium is of the order of 2 h with the shape of the impulse response function approximating a Rayleigh function with a peak near 50 min. In a recent study, Bargatze et al. (J. Geophys. Res. 90, 6387 (1985)) examined the response of the magnetosphere for varying activity levels and found that the impulse response function has two well-defined peaks for moderate activity and a single broad peak for low and high activity levels. They explain the two peaks in the response function as the sequential contributions of the directly driven process and the unloading of stored magnetotail energy. In this paper, we ascribe to the magnetosphere–ionosphere system the bulk properties of self-inductance, capacitance, and resistance. We then proceed to construct an equivalent current system for the magnetosphere–ionosphere coupling process and study its response to changes in the cross polar cap potential drop. In particular, we permit the bulk electrical parameters to change in the manner expected as the input of energy from the solar wind modifies the magnetosphere–ionosphere system. We find that the double peak in the impulse response function identified by Bargatze et al. can be understood purely in terms of changes in the directly driven system without the need to introduce the effects of the unloading of stored energy in the magnetotail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call