Abstract

A basic tenet of linear invariant systems is that they are sufficiently described by either the impulse response function or the frequency transfer function. This implies that we can always obtain one from the other. However, when the transfer function contains uncanceled poles, the impulse function cannot be obtained by the standard inverse Fourier transform method. Specifically, when the input consists of a uniform train of pulses and the output sequence has a finite duration, the transfer function contains multiple poles on the unit cycle. We show how the impulse function can be obtained from the frequency transfer function for such marginally stable systems. We discuss three interesting discrete Fourier transform pairs that are used in demonstrating the equivalence of the impulse response and transfer functions for such systems. The Fourier transform pairs can be used to yield various trigonometric sums involving sin⁡πk/Nsin⁡πLk/N, where k is the integer summing variable and N is a multiple of integer L.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.