Abstract

The validity of the principle of corresponding states is investigated for the case of a potential with more than one intrinsic length scale. The planar surface tension of coexisting liquid and vapor phases of a fluid of Lennard-Jones atoms is studied as a function of the range of the potential using both Monte Carlo simulations and density functional theory (DFT). The interaction range is varied from r(c)(*) = 2.5 to r(c)(*) = 6 and the surface tension is determined for temperatures ranging from T(*) = 0.7 up to the critical temperature in each case. The simulation results are consistent with previous studies and are shown to obey the law of corresponding states even though the potential has two intrinsic length scales. It is further shown that the corresponding states principle can also be used to enhance the accuracy of some, but not all, DFT calculations of the surface tension. The results show that most of the cutoff dependence of the surface tension can be explained as a result of changes in the cutoff-dependent phase diagram and that corresponding states can be a useful tool for explaining differences between theory and simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.