Abstract
Photoluminescence (PL) measurements were carried out to investigate the interband transition and the activation energy in CdTe/ZnTe double quantum dots (QDs). While the excitonic peaks corresponding to the interband transition from the ground electronic subband to the ground heavy-hole (E 1–HH 1) in the CdTe/ZnTe double QDs shifted to higher energy with decreasing ZnTe spacer thickness from 30 to 10 nm due to transformation from CdTe QDs to Cd xZn 1− x Te QDs, the peaks of the (E 1–HH 1) transitions shifted to lower energy with decreasing spacer thickness from 10 to 3 nm due to the tunneling effects of the electrons between CdTe double QDs. The decrease in the activation energy with decreasing ZnTe spacer thickness might originate from an increase in the number of defects in the ZnTe spacer. The present results can help improve the understanding of the interband transition and the activation energy in CdTe/ZnTe double QDs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.