Abstract
Computer simulations of bubble oscillations in liquid water irradiated by an ultrasonic wave have revealed that the characteristic of bubbles depends on types of sonochemical reactors: a horn-type reactor and a standing-wave type reactor. When the acoustic amplitude is large at 20 kHz, the bubble content is mostly water vapor even at the end of the bubble collapse and the temperature inside a bubble at the collapse is relatively low. On the other hand, when the acoustic amplitude is relatively low, the bubble content is mostly noncondensable gas at the end of the bubble collapse and the bubble temperature is relatively high. In a horn-type sonochemical reactor, the former type of bubbles are dominant because many bubbles exist near the horn-tip where the acoustic amplitude is large, while in a standing-wave type reactor the latter type of bubbles are dominant because the Bjerknes force gathers bubbles at a region where acoustic amplitude is relatively low.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.