Abstract

Numerical simulations of bubble oscillations in liquid water irradiated by an ultrasonic wave are performed for various acoustic amplitudes and various ambient pressures. In the numerical simulations, effect of non-equilibrium evaporation and condensation of water vapor at the bubble wall and that of chemical reactions of gases and vapor inside a bubble are taken into account. The oxidants such as OH radicals, O radicals, H 2O 2 molecules, and O 3 molecules are created from water vapor inside a heated bubble when a bubble collapses strongly. They are dispersed into the liquid and solutes are oxidized by the oxidants, which is called sonochemical reactions. The computer simulations have revealed that there exists the optimum bubble temperature, which is about 5500 K, for the production of the oxidants inside an air bubble because at higher bubble temperature the oxidants are strongly consumed inside a bubble by oxidizing nitrogen. Correspondingly, there exists an optimum acoustic amplitude for the production of the oxidants, which is about 2.2 atm when the ultrasonic frequency is 140 kHz and the ambient pressure is 1 atm. For an oxygen bubble, on the other hand, the amount of the oxidants created inside a bubble becomes nearly independent of the bubble temperature at the collapse above about 6000 K because nitrogen is absent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.