Abstract
The ability of a polymer to reptate through a nanopore has an influence on its circulatory half-life and biodistribution, since many physiological barriers contain nanopores. A cyclic polymer lacks chain ends, and therefore, cyclic polymers with molecular weights greater than the renal threshold for elimination should circulate longer than their linear-polymer counterparts when injected into animals. As predicted, radiolabeled cyclic polymers with molecular weights greater than the renal threshold have longer blood circulation times in mice than do linear polymers of comparable molecular weight.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have