Abstract

The effect of the method used to clean indium–tin–oxide (ITO) on its work function was investigated by ultraviolet photoemission spectroscopy (UPS) and x-ray photoemission spectroscopy. With only ultrasonic cleaning in the organic solvent, considerable carbon contamination remained on the ITO surface and the work function was low (4.5 eV). In contrast, ultraviolet (UV)–ozone treatment removed significant carbon contamination, with an increase in the work function to 4.75 eV, which improves the hole-injection efficiency into the organic hole-transport layer in organic electroluminescent devices. Although carbon contamination on the ITO surface was also removed by Ar+ sputtering, it was accompanied by the removal of oxygen from ITO, and the work function was reduced (4.3 eV). Three factors, i.e.,: (i) C-containing contaminants, (ii) the O/In ratio, and (iii) the In/Sn ratio on the ITO surface affect the work function. The present results and those of other workers suggest that these three factors affect the work function in the order: (ii)>(i)>(iii), and (i) is the main cause of the increase in the work function in the UV–ozone or O2 plasma treatments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call