Abstract
Carbon pebble rods are a promising candidate for use in high heat flux regions of magnetic fusion energy reactor walls. Under high (10 to 50 MW/m2) heat loads, carbon pebble rods release hot pebbles from the exposed surface, carrying away heat as the pebble rod surface recedes. In this work, we show that the surface recession rate during heating can be adjusted by changing the mechanical strength of the extruded rods, modifying the heat removal rate; this is accomplished here by varying the fill fraction of the inter-pebble matrix. A three-dimensional finite element model is presented that captures many experimental observations, including the sphere temperature and the surface recession rate. The model predicts that pebble release is caused by thermally driven crack propagation through the matrix and that the matrix strength against breaking is the single most important material parameter setting the pebble release rate; this prediction is supported by experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.