Abstract

The temperature-dependent hole concentration p(T) and hole mobility μp(T) are obtained in p-type 4H-SiC epilayers with several Al-doping densities. From p(T), the densities and energy levels of acceptors are determined by the graphical peak analysis method (free carrier concentration spectroscopy: FCCS) without any assumptions regarding the acceptor species. In the heavily Al-doped case, the excited states of acceptors affect p(T) because the Fermi level is located between the valence band maximum and the acceptor level (i.e., the ground state level of the acceptor), indicating that a distribution function for acceptors, which includes the influence of excited states of acceptors, should be required. Here, FCCS can determine acceptor densities and acceptor levels using any distribution function (e.g., the Fermi-Dirac distributing function or the distribution function including the influence of excited states). Two types of acceptor species are detected in the lightly Al-doped epilayers, while only one type of acceptor species is found in the heavily Al-doped epilayer. Some of the parameters required to simulate electric characteristics of 4H-SiC power electronic devices are obtained; (1) the dependence of each acceptor level on a total acceptor density and (2) the dependence of the hole mobility on temperature and total impurity density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.