Abstract
To investigate the application value of combining the Demirjian's method with machine learning algorithms for dental age estimation in northern Chinese Han children and adolescents. Oral panoramic images of 10 256 Han individuals aged 5 to 24 years in northern China were collected. The development of eight permanent teeth in the left mandibular was classified into different stages using the Demirjian's method. Various machine learning algorithms, including support vector regression (SVR), gradient boosting regression (GBR), linear regression (LR), random forest regression (RFR), and decision tree regression (DTR) were employed. Age estimation models were constructed based on total, female, and male samples respectively using these algorithms. The fitting performance of different machine learning algorithms in these three groups was evaluated. SVR demonstrated superior estimation efficiency among all machine learning models in both total and female samples, while GBR showed the best performance in male samples. The mean absolute error (MAE) of the optimal age estimation model was 1.246 3, 1.281 8 and 1.153 8 years in the total, female and male samples, respectively. The optimal age estimation model exhibited varying levels of accuracy across different age ranges, which provided relatively accurate age estimations in individuals under 18 years old. The machine learning model developed in this study exhibits good age estimation efficiency in northern Chinese Han children and adolescents. However, its performance is not ideal when applied to adult population. To improve the accuracy in age estimation, the other variables can be considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.