Abstract

The invasion of non-native species into an ecosystem can markedly alter the structure and functioning of the system. Yet, we have limited knowledge of the factors that determine invasion success. Behavioural interactions have been suggested as critical determinants of invasion success in animals, but the exact mechanisms are less well known. We investigated if density-dependent behavioural interactions could have facilitated the invasion of the shrimp Palaemon elegans into the spawning habitat of the threespine stickleback Gasterosteus aculeatus in the Baltic Sea. This was done by manipulating the densities of the two species in mesocosms. We found the stickleback to dominate behaviourally over the shrimp through higher aggression, but that the impact on the shrimp was density-dependent; a high density of sticklebacks increased aggressive interactions, which caused the shrimps to decrease their activity and restrict their habitat use to dense vegetation, while a low density of sticklebacks had no impact on the distribution and activity of the shrimps. The density of the shrimps had no impact on stickleback behaviour. These results suggest that the present density of the stickleback has allowed the invasion of the shrimp into the habitat. However, a current increase in stickleback abundance caused by human-induced ecological disturbances could limit the further expansion of the shrimp. Thus, our results indicate that a behavioural mechanism–density-dependent aggression–can influence invasion success and subsequent population expansion. At a broader level, our results stress the importance of considering density-dependent behavioural interactions when investigating the mechanisms behind invasion success.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call