Abstract

BackgroundBlood plasma is the main source of extracellular vesicles (EVs) in clinical studies aiming to identify biomarkers and to investigate pathophysiological processes, especially regarding EV roles in inflammation and thrombosis. However, EV isolation from plasma has faced the fundamental issue of lipoprotein contamination, representing an important bias since lipoproteins are highly abundant and modulate cell signaling, metabolism, and thromboinflammation. ObjectivesHere, we aimed to isolate plasma EVs after depleting lipoproteins, thereby improving sample purity and EV thromboinflammatory analysis. MethodsDensity-based gradient ultracentrifugation (G-UC) was used for lipoprotein depletion before EV isolation from plasma through size-exclusion chromatography (SEC) or serial centrifugation (SC). Recovered EVs were analyzed by size, concentration, cellular source, ultrastructure, and bottom-up proteomics. ResultsG-UC efficiently separated lipoproteins from the plasma, allowing subsequent EV isolation through SEC or SC. Combined analysis from EV proteomics, cholesterol quantification, and apoB-100 detection confirmed the significant reduction in lipoproteins from isolated EVs. Proteomic analysis identified similar gene ontology and cellular components in EVs, regardless of lipoprotein depletion, which was consistent with similar EV cellular sources, size, and ultrastructure by flow cytometry and transmission electron microscopy. Importantly, lipoprotein depletion increased the detection of less abundant proteins in EV proteome and enhanced thromboinflammatory responses of platelets and monocytes stimulated in vitro with EV isolates. ConclusionCombination of G-UC+SEC significantly reduced EV lipoprotein contamination without interfering in EV cellular source, gene ontology, and ultrastructure, allowing the recovery of highly pure EVs with potential implications for functional assays and proteomic and lipidomic analyses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.