Abstract

In the present paper, a new family of multi-layers (deep) neural network (NN) operators is introduced. Density results have been established in the space of continuous functions on [−1,1], with respect to the uniform norm. First, the case of the operators with two-layers is considered in detail, then the definition and the corresponding density results have been extended to the general case of multi-layers operators. All the above definitions allow us to prove approximation results by a constructive approach, in the sense that, for any given f all the weights, the thresholds, and the coefficients of the deep NN operators can be explicitly determined. Finally, examples of activation functions have been provided, together with graphical examples. The main motivation of this work resides in the aim to provide the corresponding multi-layers version of the well-known (shallow) NN operators, according to what is done in the applications with the construction of deep neural models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.