Abstract
We present a technique to compute the microcanonical thermodynamical properties of a manybody quantum system using tensor networks. The Density Of States (DOS), and more general spectral properties, are evaluated by means of a Hubbard-Stratonovich transformation performed on top of a real-time evolution, which is carried out via numerical methods based on tensor networks. As a consequence, the free energy and thermal averages can be also calculated. We test this approach on the one-dimensional Ising and Fermi-Hubbard models. Using matrix product states, we show that the thermodynamical quantities as a function of temperature are in very good agreement with the exact results. This approach can be extended to higher-dimensional system by properly employing other types of tensor networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.