Abstract

We present a simple model of the local order in amorphous organic semiconductors, which naturally produces a spatially correlated exponential density of states (DOS). The dominant contribution to the random energy landscape is provided by electrostatic contributions from dipoles or quadrupoles. An assumption of the preferable parallel orientation of neighbor quadrupoles or antiparallel orientation of dipoles directly leads to the formation of the exponential tails of the DOS even for a moderate size of the ordered domains. The insensitivity of the exponential tail formation to the details of the microstructure of the material suggests that this mechanism is rather common in amorphous organic semiconductors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call