Abstract

The electronic density of states (DOS) plays a central role in controlling the charge-carrier transport in amorphous organic semiconductors, while its accurate determination is still a challenging task. We apply the low-temperature fractional thermally stimulated luminescence (TSL) technique to determine the DOS of pristine amorphous films of organic light-emitting diode (OLED) host materials. The DOS width is determined for two series of hosts, namely, (i) carbazole-biphenyl derivatives, 4,4\ensuremath{'}-bis(N-carbazolyl)-1,1\ensuremath{'}-biphenyl (CBP), 3,3\ensuremath{'}-di(9$H$-carbazol-9-yl)-1,1\ensuremath{'}-biphenyl (mCBP), and 3\ensuremath{'},5-di(9$H$-carbazol-9-yl)-[1,1\ensuremath{'}-biphenyl]-3-carbonitrile (mCBP-CN), and (ii) carbazole-phenyl (CP) derivatives, 1,3-bis(N-carbazolyl)benzene (mCP) and 9-[3-(9$H$-carbazol-9-yl)phenyl]-9$H$-carbazole-3-carbonitrile (mCP-CN). TSL originates from radiative recombination of charge carriers thermally released from the lower-energy part of the intrinsic DOS that causes charge trapping at very low temperatures. We find that the intrinsic DOS can be approximated by a Gaussian distribution, with a deep exponential tail accompanying this distribution in CBP and mCBP films. The DOS profile broadens with increasing molecular dipole moments, varying from 0 to 6 D, in a similar manner within each series, in line with the dipolar disorder model. The same molecular dipole moment, however, leads to a broader DOS of CP compared with CBP derivatives. Using computer simulations, we attribute the difference between the series to a smaller polarizability of cations in CP derivatives, leading to weaker screening of the electrostatic disorder by induction. These results demonstrate that the low-temperature TSL technique can be used as an efficient experimental tool for probing the DOS in small-molecule OLED materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.