Abstract

ABSTRACTSteady-state space-charge limited current (SCLC) measurements are used to investigate the density of states (DOS) in the mobility gap of hydrogenated amorphous silicon (a-Si:H). The density of states is calculated by different methods based on both continuous DOS and discrete traps assumptions. The density of states found by the SCLC measurements is used to set the trap densities and trap energy levels to model a vertical a-Si:H thin-film transistor (TFT) using the Medici device simulation package. The effect of different sets of traps in the bulk of a-Si:H and variation of the physical dimensions of the device on the characteristics of the vertical TFT is studied. The simulation on the space-charge limited current is performed to verify the validity and accuracy of the SCLC method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call