Abstract

An efficient density matrix renormalization group (DMRG) algorithm is presented for the Bethe lattice with connectivity $Z = 3$ and antiferromagnetic exchange between nearest neighbor spins $s= 1/2$ or 1 sites in successive generations $g$. The algorithm is accurate for $s = 1$ sites. The ground states are magnetic with spin $S(g) = 2^g s$, staggered magnetization that persists for large $g > 20$ and short-range spin correlation functions that decrease exponentially. A finite energy gap to $S > S(g)$ leads to a magnetization plateau in the extended lattice. Closely similar DMRG results for $s$ = 1/2 and 1 are interpreted in terms of an analytical three-site model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.