Abstract

Surface-enhanced Raman scattering (SERS) of 4,4′-azopyridine (AZPY) on silver foil substrate was measured under 1064 nm excitation lines. Density-functional theory (DFT) methods were used to calculate the structure and vibrational spectra of models such as Ag–AZPY, Ag 4–AZPY and Ag 6–AZPY complexes with B3LYP/6-31++G(d,p)(C,H,N)/Lanl2dz(Ag) basis set. The Raman bands of AZPY were identified on the ground of analog computation of potential energy distribution. The calculated spectra of Ag 4–AZPY and Ag 6–AZPY models were much approximated to the experimental results than that of Ag–AZPY model. The DFT results showed that the angles between two pyridyl rings keep 0° from AZPY to Ag–AZPY, Ag 4–AZPY and Ag 6–AZPY model. The energy gaps between the HOMO and LUMO changed from 363 to 1140 nm for AZPY-Ag complexes according to the DFT results. An conclusion was conceived that chemical enhancement mechanism may play an important role in the SERS of AZPY on silver substrate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call