Abstract

Carbon monoxide (CO) is a gaseous pollutant with adverse effects on human health and the environment. Kaolinite is a natural mineral resource that can be used for different applications, including that it can also be used for retention of pollutant gases. The adsorption behavior of carbon monoxide molecules on the (001) surface of kaolinite was studied systematically by using density-functional theory and supercell models for a range coverage from 0.11 to 1.0 monolayers (ML). The CO adsorbed on the three-fold hollow, two-fold bridge, and one-fold top sites of the kaolinite(001) was tilted with respect to the surface. The strongest adsorbed site of carbon monoxide on the kaolinite (001) surface is the hollow site followed by the bridge and top site. The adsorption energy of CO decreased when increasing the coverage, thus indicating the lower stability of surface adsorption due to the repulsion of neighboring CO molecules. In addition to the adsorption structures and energetics, the lattice relaxation, the electronic density of states, and the different charge distribution have been investigated for different surface coverages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call