Abstract

The nonadiabatic (NA) process is crucial to photochemistry and photophysics and requires an atomistic understanding. However, conventional NA molecular dynamics (MD) for condensed-phase materials on the nanoscale are generally limited to the semilocal exchange-correlation functional, which suffers from the bandgap and thus NA coupling (NAC) problems. We consider TiO2 and a black phosphorus monolayer as two prototypical systems, perform NA-MD simulations of nonradiative electron-hole recombination, and demonstrate for the first time that density functional theory (DFT) half-electron self-energy correction can reproduce the bandgap, effective masses of carriers, luminescence line widths, NAC, and excited-state lifetimes of the two systems at the hybrid functional level while the computational cost remains at that of the Predew-Burke-Ernzerhof functional. Our study indicates that the DFT-1/2 method can greatly accelerate NA-MD simulations while maintaining the accuracy of the hybrid functional, providing an advantage for studying photoexcitation dynamics for large-scale condensed-phase materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.