Abstract
We review the recent progress in the density functional theory for superconductors (SCDFT). Motivated by the long-studied plasmon mechanism of superconductivity, we have constructed an exchange-correlation kernel entering the SCDFT gap equation which includes the plasmon effect. For the case of lithium under high pressures, we show that the plasmon effect substantially enhances the transition temperature (Tc) by cooperating with the conventional phonon mechanism and results in a better agreement between the theoretical and experimentally observed Tc. Our present formalism will be a first step to density functional theory for unconventional superconductors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.