Abstract
Abstract In many applications it has been found that the standard generalized gradient approximation (GGA) does not accurately describe weak chemical bond and electronic properties of solids containing transition metals. In this work, we have considered the intercalation material 1T-Li x TiS2 (0≤x≤1) as a model system for the evaluation of the accuracy of GGA and corrected GGA with reference to the availabile experimental data. The influence of two different dispersion corrections (D3 and D-TS) and an on-site Coulomb repulsion term (GGA+U) on the calculated structural and electronic properties is tested. All calculations are based on the Perdew-Burke-Ernzerhof (PBE) functional. An effective U value of 3.5 eV is used for titanium. The deviation of the calculated lattice parameter c for TiS2 from experiment is reduced from 14 % with standard PBE to −2 % with PBE+U and Grimme’s D3 dispersion correction. 1T-TiS2 has a metallic ground state at PBE level whereas PBE+U predicts an indirect gap of 0.19 eV in agreement with experiment. The 7Li chemical shift and quadrupole coupling constants are in reasonable agreement with the experimental data only for PBE+U-D3. An activation energy of 0.4 eV is calculated with PBE+U-D3 for lithium migration via a tetrahedral interstitial site. This result is closer to experimental values than the migration barriers previously obtained at LDA level. The proposed method PBE+U-D3 gives a reasonable description of structural and electronic properties of 1T-Li x TiS2 in the whole range 0≤x≤1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.