Abstract

As a clean and efficient unconventional energy source, natural gas hydrate has been highly valued and vigorously developed by many countries in recent years. In order to solve the problem that the existing hydrate structure symmetry is not high, which leads the theoretical research to be restricted, it is imperative to explore a new type of methane hydrate structure with high symmetry. Using the first-principles method which is based on the density functional theory (DFT), the structure and electronic properties of N-methane hydrate are calculated in the generalized gradient approximation (GGA) for Grimme dispersion correction. The obtained results are shown below. 1) The water cage structure of N-methane hydrate is a truncated octahedron (4<sup>6</sup>6<sup>8</sup>), which is composed of 8 regular hexagons and 6 squares, and the average length of the hexagons and the average length of the squares are both 2.723 Å. The average bond length of water molecules is optimized to be 1.056 Å, and the average bond angle of water molecules is 107.738°. The average bond length of methane molecules is 1.0973 Å. The average distance from methane molecules to water molecules is 4.2831 Å that is longer than the distance in the I- methane hydrate. So N-methane hydrate can accommodate larger volumes of gas molecules. The symmetric group is <inline-formula><tex-math id="M2">\begin{document}${\rm{IM}}\bar 3{\rm{M}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20182230_M2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="16-20182230_M2.png"/></alternatives></inline-formula> for N-methane hydrate, which has a simple and strict periodic stable structure. 2) The lattice parameter of N-methane hydrate is 7.70 Å, and the density is 0.903 g/cm<sup>3</sup>, which is greater than I-, II- and H-type hydrate density. 3) The x-ray diffraction(XRD) pattern of N-methane hydrateis calculated and is close to that of of I-methane hydrate, while the water cage of N-methane hydrate is larger. 4) The interaction between methane molecules and the water cage is van der Waals force, and the formation energy of N- methane hydrate is –0.247 eV, which indicates that the N-methane hydrate is easy to form. Both the density of states and partial density of states indicate that the interaction between methane and water cage is weak, and it relies on molecular force. 5) In addition, N-methane hydrate is an insulator material with the energy gap greater than 5 eV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.