Abstract

Polymorphs or phases - different inorganic solids structures of the same composition usually have widely differing properties and applications, thereby synthesizing or predicting new classes of polymorphs for a certain compound is of great significance and has been gaining considerable interest. Herein, we perform a density functional theory based tight binding (DFTB) study on theoretical prediction of several new phases series of II-VI semiconductor material ZnO nanoporous phases from their bottom-up building blocks. Among these, three phases are reported for the first time, which could greatly expand the family of II- VI compound nanoporous phases. We also show that all these generally can be categorized similarly to the aluminosilicate zeolites inorganic open-framework materials. The hollow cage structure of the corresponding building block ZnkOk (k= 9, 12, 16) is well preserved in all of them, which leads to their low-density nanoporous and high flexibility. Additionally the electronic wide-energy gap of the individual ZnkOk is also retained. Our study reveals that they are all semiconductor materials with a large band gap. Further, this study is likely to be the common for II-VI semiconductor compounds and will be helpful for extending their range of properties and applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call