Abstract
An iron-doped nanocage (FeC22) was assessed in this work based on density functional theory (DFT) calculations to work as a carrier of allopurinol (ALP) drug during its adsorption. The structural and electronic specifications were evaluated to analyze the formation of ALP@FeC22 conjugation yielding A1, A2, and A3 configurations with different featured properties. The existences of O…Fe, N…Fe, and H…C interactions were found for the conjugation formation in a physical non-covalent mode, in which the collaboration of N…Fe and H…C interactions yielded the strongest A3 conjugation with −49.31 kcal/mol strength. Interactions details also confirmed the formation of such strong conjugation. The electronic specifications based on the dominant frontier molecular orbitals showed measurable variations of features from the parental nanocage to the conjugation and also among the configurations. Finally, the FeC22 nanocage was proposed as a possible carrier of ALP by the formation of ALP@FeC22 conjugation for a smart drug delivery platform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.