Abstract

AbstractThe accurate pKa determinations for three carboxylic acids have been investigated using the combination of the extended clusters‐continuum model at B3LYP/6‐31+g(d,p) and B3LYP/6‐311++g(d,p) levels. To take into account of the effect of the water combined with carboxylic acids in different positions, eleven molecular clusters were considered. Among these clusters, the one involving the carboxylic acid wrapped up with water molecules and saturated with hydrogen bonds (four hydrogen bonds around COOH) leads to the best B3LYP pKa results compared to the experimental data. For those clusters saturated with hydrogen bonds, when n = 3 (the number of water molecules), the average absolute errors between the calculated pKa results and experimental data of these three carboxylic acids were 0.19 (0.23) and 0.12 (0.22) pKa at B3LYP/6‐31+g(d,p)//PCM (IEFPCM) and B3LYP/6‐311++g(d,p)//PCM (IEFPCM) levels, respectively; when n = 4, they are 0.53 (1.23) and 1.09 (1.03) pKa, respectively. On the basis of the above results, the molecular cluster saturated with four hydrogen bonds formed by three waters and one carboxylic acid molecule was the chief existence in the carboxylic acid solution. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call