Abstract

The hydration of carboxylic acids in dilute aqueous solutions is important for our understanding of their functioning in the biochemical context. Here we apply vibrational spectra of HDO isotopically diluted in H(2)O to study this phenomenon, using the difference spectra method for analysis and interpretation of the results. The spectra of HDO affected by formic, acetic, and propionic acid display characteristic component bands, significantly red-shifted from the bulk HDO band position. The appearance of these component bands is linked with isotopic substitution on the carboxylic acid molecule, which forms a short and strong hydrogen bond with a water molecule. Additionally, a charge separation due to the proton transfer in the neutral form of the complex leading to a contact ion pair formation may be inferred from the affected HDO spectra. Apart from the contraction of the principal acid-water hydrogen bond, it results in other major structural changes in the hydration shell, as revealed by density functional theory (DFT) calculations of optimal geometries of aqueous clusters of the studied acids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.