Abstract

The mechanical–electrical coupling properties of piezoelectric semiconductors endow these materials with novel device applications in microelectromechanical systems, sensors, human–computer interfaces, etc. When an applied strain is exerted on a piezoelectric semiconductor, piezoelectric charges are generated at the surface or interface of the semiconductor, which can be utilized to control the electronic transport characteristics. This is the fundamental working mechanism of piezotronic devices, called the piezotronic effect. In the present report, a series of piezotronic transistors composed of different electrode metals and semiconductors is examined using density functional theory calculation. It is found that the influence of semiconductors on the piezotronic effect is larger than the impact of metals, and GaN and CdS are promising candidates for piezotronic and piezo-phototronic devices, respectively. The width of the piezoelectric charge distribution obtained in the present study can be used as a parameter in classical finite-element-method based simulations, which provide guidance on designing high-performance piezotronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.