Abstract

Recently it was discovered that the iron coordination complex L(N4)Fe(II)(OTf)(2) (1) (L(N4) = neutral tetraazadendate ligand and OTf = OSO(2)CF(3)) and its analogues are efficient water oxidizing catalysts (WOCs) in aqueous acidic solution with excess amount of ceric(IV) ammonium nitrate (CAN), [Ce(IV)(NO(3))(6)](NH(4))(2), as sacrificial oxidants. The probable mechanism of water oxidation by these catalysts was explored on the basis of density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations for 1 as a representative WOC. We examined the conversion of 1 to the resting intermediate [L(N4)Fe(IV)(O)(OH(2))](2+) [2(IV)] as well as two catalytic cycles involving 2(IV): one proposed by Fillol et al. [Nat. Chem. 2011, 3, 1] in which the Fe oxidation states of the intermediate species vary from +2 to +5, and the alternative cycle in which they remain constant at +4. In addition, we investigated the role of the sacrificial oxidant CAN in driving the catalytic cycle. Our DFT and TD-DFT calculations confirm the experimental observation that 2(IV) is the resting species, and indicate that the catalytic cycle in which the Fe oxidation states of the intermediate species remain at +4 is energetically more favorable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.