Abstract

The authors develop a finite-size-scaling theory describing the joint density and energy fluctuations in a near-critical fluid. As a result of the mixing of the temperature and chemical potential in the two relevant scaling fields, the energy operator features in the critical density distribution as an antisymmetric correction to the limiting scale-invariant form. Both the limiting form and the correction are predicted to be functions that are characteristic of the Ising universality class and are independently known. The theory is tested with extensive Monte Carlo studies of the two-dimensional Lennard-Jones fluid, within the grand canonical ensemble. The simulations and scaling framework together are shown to provide a powerful way of identifying the location of the liquid-gas critical point, while confirming and clarifying its essentially Ising character. The simulations also show a clearly identifiable signature of the field-mixing responsible for the failure of the law of rectilinear diameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.