Abstract
Deep eutectic solvents (DESs) are derived from two or more salts as the hydrogen bond acceptors (HBAs) and hydrogen bond donors (HBDs). In this work, DES namely allyltriphenyl phosphonium bromide-diethylene glycol (ATPPB-DEG) was prepared by using three molar ratios of 1:4, 1:10 and 1:16 salt to HBD. The volumetric properties of aqueous DESs, such as density, molar volume, isobaric thermal expansion, apparent molar volume and apparent molar expansibility were reported at several temperatures from 293.15 to 343.15K. A mathematical equation, so-called Jouyban–Acree model (JAM), was used to correlate the experimental density and molar volume data of aqueous solution of DESs with respect to the concentration and temperature. The results disclosed that this model is an accurate and reliable model for the prediction of aqueous DES properties. The excess properties, such as excess molar volume and excess isobaric thermal expansion were reported and fitted to two different equations. In order to calculate the limiting apparent molar volume values, the apparent molar volume values were fitted into a Redlich–Mayer equation. By applying the Hepler equation, it was found that DESs with molar ratios of 1:4 and 1:10 are as structure-maker solutes, while the DES 1:16 is a structure-breaking solute in aqueous solutions at different temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.