Abstract

We present the results of a computer simulation study of the liquid density distribution normal to the interface between liquid Hg and the reconstructed (0001) face of sapphire. The simulations are based on an extension of the self-consistent quantum Monte Carlo scheme previously used to study the structure of the liquid metal-vapor interface. The calculated density distribution is in very good agreement with that inferred from the recent experimental data of Tamam et al. (J. Phys. Chem. Lett. 2010, 1, 1041-1045). We conclude that, to account for the difference in structure between the liquid Hg-vapor and liquid-Hg-reconstructed (0001) Al(2)O(3) interfaces, it is not necessary to assume there is charge transfer from the Hg to the Al(2)O(3). Rather, the available experimental data are adequately reproduced when the van der Waals interactions of the Al and O atoms with Hg atoms and the exclusion of electron density from Al(2)O(3) via repulsion of the electrons from the closed shells of the ions in the solid are accounted for.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.