Abstract

A simplified two-dimensional model to predict liquid flux distribution and collection efficiency in cylindrical Venturi scrubbers with Pease−Anthony mode operation is evaluated with experimental data from a pilot-scale unit. Prediction of the liquid flux distribution near the point of injection appears to be far from agreement with experimental values while the accuracy of prediction has been found to improve with distance from the injection point. The initial location of the liquid source immediately after atomization has been found to affect the liquid flux distribution significantly. Although the overall liquid distribution pattern is found to be in good agreement with the experimental data, the prediction of liquid distribution appears to be a strong function of jet penetration length and turbulence caused by operating conditions. Concentric injection at high liquid rates could result in collision between jets from nozzles as they converge at the center of the scrubber. Turbulence caused by interaction between the jets is accounted for by using varying Peclet numbers. A dimensionless group, Venturi number, developed from jet penetration correlation has been found to predict conditions that give rise to uniform flux distribution and maximum collection efficiency. Venturi numbers between 1 × 10-3 and 1.5 × 10-3 appear to predict conditions for cylindrical Venturi scrubbers (with radial injection into the throat using nozzles) for optimal liquid utilization and maximum collection efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.