Abstract

This paper addresses the problem of identifying a linear time-varying (LTV) system characterized by a (possibly infinite) discrete set of delays and Doppler shifts. We prove that stable identifiability is possible if the upper uniform Beurling density of the delay-Doppler support set is strictly smaller than 1/2 and stable identifiability is impossible for densities strictly larger than 1/2. The proof of this density theorem reveals an interesting relation between LTV system identification and interpolation in the Bargmann-Fock space. Finally, we introduce a subspace method for solving the system identification problem at hand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.