Abstract
For streaming data that arrive continuously such as multimedia data and financial transactions, clustering algorithms are typically allowed to scan the data set only once. Existing research in this domain mainly focuses on improving the accuracy of clustering. In this paper, a novel density-based hierarchical clustering scheme for streaming data is proposed in order to improve both accuracy and effectiveness; it is based on the agglomerative clustering framework. Traditionally, clustering algorithms for streaming data often use the cluster center to represent the whole cluster when conducting cluster merging, which may lead to unsatisfactory results. We argue that even if the data set is accessed only once, some parameters, such as the variance within cluster, the intra-cluster density and the inter-cluster distance, can be calculated accurately. This may bring measurable benefits to the process of cluster merging. Furthermore, we employ a general framework that can incorporate different criteria and, given the same criteria, will produce similar clustering results for both streaming and non-streaming data. In experimental studies, the proposed method demonstrates promising results with reduced time and space complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.