Abstract

The physicochemical properties are very important in theoretical investigation of aqueous electrolyte solution and industrial design of hydrometallurgical processes. In the green hydrometallurgical process of chromite ore with sub-molten salt medium of KOH, the ternary system of KOH+K 2CrO 4+H 2O is essential to process control and industrial operation. In order to satisfy the needs of both fundamental research and industrial application, the dynamic viscosity (η) and density (ρ) of mixed aqueous electrolyte solution of KOH and K 2CrO 4 were measured over a temperature range from 15 to 60 °C by using Ubbelohde-type capillary viscometers and a series of densimeters, respectively. The temperature is controlled to an accuracy of ±0.01 °C throughout the experiment with thermostat. The dynamic viscosity and density of the ternary systems are performed as functions of chromate and hydroxide concentration and temperature. The regression equations for viscosity and density are obtained with a least-square method and the calculated values are consistent well with the experimental data. The semi-empirical equation obtained will be helpful and instructive to industrial application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.