Abstract

In order to determine the titanium neutral density, a direct current (dc) plasma discharge, amplified by a radio-frequency (rf) coil, was studied by absorption spectrometry. The argon pressure varied from 5 to 40 mTorr. The dc and rf powers varied between 100 and 1500 W and 0 and 500 W, respectively. The plasma gas temperature necessary for the density calculation was evaluated by analyzing the N2 rotational spectrum in an Ar–N2 gas mixture. When increasing the rf power a decrease of titanium neutral density was found. This decrease is related to the increased titanium ion density. When using the rf coil, the titanium degree of ionization can be up to 90%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.