Abstract

Fe-Cu alloys are used as structural materials for manufacture of large machine parts subjected to shock loads. Fe-Cu alloys have a higher corrosion resistance in a humid atmosphere and in salt solutions than cast steel. Fe-Cu alloys have high enough damping characteristics. Upon cooling the Fe-Cu melts is stratified into two phases before crystallization which in field of gravity are separated by density. It is possible to suppress delamination and obtain a material with structure of a “frozen emulsion” by heating melt to the temperature T* determined for each composition by a specific way. In this paper, we studied surface tension of liquid alloys of Fe-1wt.% Cu, Fe-20wt.% Cu, and Fe-30wt.%Cu in order to determine the temperature T*. For the melt of Fe-20wt.% Cu value T*=1670°C is highest. It is confirmed by results of measuring temperature dependence of surface tension. Temperature dependence of the surface tension Fe-Cu melts is characterized by a positive value of the temperature coefficient of surface tension dσ/dT which is abnormal for metal melts. Experimental data on the density, the surface tension of Fe-Cu liquid alloys have of independent metrological importance for practical foundry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call