Abstract

Densitometric analysis of images obtained by digital subtraction angiography (DSA) allows for more reproducible and less operator-dependent quantitation of ventricular function. Conventional DSA uses temporal subtraction but is limited by misregistration artifacts. Dual-energy digital subtraction angiography (DE-DSA) is immune to such misregistration artifacts. The ability of DE-DSA to quantitate changes in regional ventricular volume resulting from ischemia was tested. Densitometric analysis of both phase-matched and ejection fraction DE-DSA images was used to quantitate regional left ventricular systolic function during four levels of ischemia ranging from mild to severe in open-chest dogs ( n = 10). DE-DSA left ventriculograms were obtained by means of central venous injections of iodinated contrast medium. Ischemia was graded according to percentage of systolic wall thickening as measured by sonomicrometry. Phase-matched end-systolic images were obtained at each of four levels of ischemia by subtracting an end-systolic control image from each end-systolic ischemic image. Ejection fraction images were obtained at the control level and at each level of ischemia by subtracting an end-systolic image from an end-diastolic image of the same cardiac cycle. The resulting wall motion difference signals represent the changes in regional ventricular volumes and were quantitated by densitometry. Densitometry was able to detect the effect of all levels of ischemia on regional function, even the mildest. Densitometric analysis of both phase-matched and ejection fraction DE-DSA images provides a sensitive technique for detecting and quantitating the changes in regional left ventricular systolic volume that occur with ischemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.