Abstract
The densities, viscosities, and sound speeds were measured for six binary mixtures of methyl methacrylate (MMA)+2-methoxyethanol (ME), +2-ethoxyethanol (EE), +2-butoxyethanol (BE), +1-butanol (1-BuOH), +1-pentanol (1-PeOH), and +1-heptanol (1-HtOH) at 298.15 and 308.15 K. The mixture viscosities were correlated by Grunberg–Nissan, McAllister, and Auslander equations. The sound speeds were predicted by using free length and collision factor theoretical formulations, and Junjie and Nomoto equations. The excess viscosities and excess isentropic compressibilities were also calculated. A qualitative analysis of both of these functions revealed that structure disruptions are more predominant in MMA+1-alcohol than in MMA+alkoxyethanols mixtures. The estimated relative associations are found to become less in MMA+alcohol mixtures than in pure alcohols. The solvation numbers derived from the isentropic compressibility of the mixtures, considering MMA as a solvent, showed that structure making interactions are also present in MMA + alkoxyethanols in addition to the structure disruptions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have