Abstract

Searching for a community based on query nodes in a graph is a fundamental problem and has been extensively investigated. Most of the existing approaches focus on finding a community in a social network, and very few studies consider location-based social networks where users can check in locations. In this paper we propose the GeoSocial Community Search problem (GCS) which aims to find a social community and a cluster of spatial locations that are densely connected in a location-based social network simultaneously. The GCS can be useful for marketing and user/location recommendation. To the best of our knowledge, this is the first work to find a social community and a cluster of spatial locations that are densely connected from location-based social networks. We prove that the problem is NP-hard, and is not in APX, unless P = NP. To solve this problem, we propose three algorithms: core-based basic algorithm, top-down greedy removing algorithm, and an expansion algorithm. Finally, we report extensive experimental studies that offer insights into the efficiency and effectiveness of the proposed solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.