Abstract
In indoor environments, reverberation can distort the signalseceived by active noise cancelation devices, posing a challenge to sound classification. Therefore, we combined three speech spectral features based on different frequency scales into a densely connected network (DenseNet) to accomplish sound classification with reverberation effects. We adopted the DenseNet structure to make the model lightweight A dataset was created based on experimental and simulation methods, andhe classification goal was to distinguish between music signals, song signals, and speech signals. Using this framework, effectivexperiments were conducted. It was shown that the classification accuracy of the approach based on DenseNet and fused features reached 95.90%, betterhan the results based on other convolutional neural networks (CNNs). The size of the optimized DenseNet model is only 3.09 MB, which is only 7.76% of the size before optimization. We migrated the model to the Android platform. The modified model can discriminate sound clips faster on Android thanhe network before the modification. This shows that the approach based on DenseNet and fused features can dealith sound classification tasks in different indoor scenes, and the lightweight model can be deployed on embedded devices.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.