Abstract
We demonstrate the fabrication of high-density aligned graphene nanoribbon (GNR) arrays by plasma etching of graphene sheets through a nanomask derived from self-assembled poly (styrene-block-dimethylsiloxane) (PS-PDMS) diblock copolymer films. This approach produces parallel GNR (∼12 nm wide) arrays at ∼35 nm pitch. Microscopy and polarized Raman spectroscopy are used to reveal the high-degree of alignment of GNRs. Electrical measurements show that parallel GNRs in a 1 μm wide region can deliver ∼0.38 mA current at a source-drain bias of 1 V. This novel patterning approach allows for the fabrication of densely aligned GNR arrays on various substrates and could provide a route to large scale integration of GNRs into nanoelectronics, optoelectronics and biosensors. Open image in new window
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have