Abstract

The calculation of the optical properties of hot dense plasmas with a model that has self-consistent plasma physics is a grand challenge for high energy density science. Here we exploit a recently developed electronic structure model that uses multiple scattering theory to solve the Kohn-Sham density functional theory equations for dense plasmas. We calculate opacities in this regime, validate the method, and apply it to recent experimental measurements of opacity for Cr, Ni, and Fe. Good agreement is found in the quasicontinuum region for Cr and Ni, while the self-consistent plasma physics of the approach cannot explain the observed difference between models and the experiment for Fe.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.