Abstract
PbSe-based thermoelectric materials exhibit promising ZT values at medium temperature, but its near-room-temperature thermoelectric properties are overlooked, thus restricting its average ZT (ZTave) value at low-medium temperatures. Here, a high ZTave of 0.90 at low temperature (300–573 K) is reported in n-type PbSe-based thermoelectric material (Pb1.02Se0.72Te0.20S0.08−0.3%Cu), resulting in a large ZTave of 0.96 at low-medium temperatures (300–773 K). This high thermoelectric performance stems from its ultralow lattice thermal conductivity caused by dense dislocations through heavy Te/S alloying and Cu interstitial doping. The dislocation density evaluated by modified Williamson-Hall method reaches up to 5.4 × 1016 m−2 in Pb1.02Se0.72Te0.20S0.08−0.3%Cu. Moreover, the microstructure observation further uncloses two kinds of dislocations, namely screw and edge dislocations, with several to hundreds of nanometers scale in length. These dislocations in lattice can strongly intensify phonon scattering to minimize the lattice thermal conductivity and simultaneously maintain high carrier transport. As a result, with the reduced lattice thermal conductivity and optimized power factor in Pb1.02Se0.72Te0.20S0.08−0.3%Cu, its near-room-temperature thermoelectric performance is largely enhanced and exceeds previous PbSe-based thermoelectric materials.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have